Encuentra rápidamente lo que buscas

Journal of Neurology
Journal of Neurology
Volume 271, Issue 9 September 2024

Todas las revistas Índice de la revista

Laura Fionda, Luca Leonardi, Matteo Garibaldi

Introduction Myotonic dystrophy type 1 (DM1) is an autosomal dominant disease characterized by myotonia and progressive muscular weakness and atrophy. The aim of this study was to investigate the usefulness of longitudinal muscle MRI in detecting disease activity and progression in DM1, and to better characterize muscle edema, fat replacement and atrophy overtime.

Materials and methods This is a prospective, observational, longitudinal study including 25 DM1 patients that performed at least two muscle MRIs. Demographic and genetic characteristics were recorded. Muscular Impairment Rating Scale (MIRS) and MRC score were performed within 3 months from MRIs at baseline (BL) and at follow-up (FU). We analysed 32 muscles of lower body (LB) and 17 muscles of upper body (UB) by T1 and STIR sequences. T1-, STIR- and atrophy scores and their variations were evaluated. Correlations between MRIs’ scores and demographic, clinical and genetic characteristics were analysed.

Results Eighty (80%) of patients showed fat replacement progression at FU. The median T1 score progression (DeltaT1-score) was 1.3% per year in LB and 0.5% per year in UB. The rate of fat replacement progression was not homogenous, stratifying patients from non-progressors to fast progressors (>3% DeltaT1-score per year). Half of the STIR-positive muscles at BL showed T1-score progression at FU. Two patients with normal MRI at baseline only showed STIR-positive muscle at FU, marking the disease activity onset. STIR positivity at baseline correlated with fat replacement progression (?T1-score; p<0.0001) and clinical worsening at FU (DeltaMRC-score; p<0.0001). Sixty-five (65%) of patients showed STIR- and fat replacement-independent muscle atrophy progression, more evident in UB.

Conclusions Muscle MRI represents a sensitive biomarker of disease activity, severity, and progression in DM1. STIR alterations precede fat replacement and identify patients with a higher risk of disease progression, while T1-sequences reveal atrophy and fat replacement progression before clinical worsening.